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Time Discretization in the Backward Solution 
of Parabolic Equations. 1* 

By Lars Elden 

Abstract. The problem of solving a parabolic partial differential equation backwards in time 
by a method related to the Tikhonov-Phillips regularization method is considered. Time 
discretizations based on Pade approximations of the exponential function are studied, and a 
priori estimates of the step length are given, which guarantee an almost optimal error bound. 
The computational efficiency of different discretizations is discussed. Some numerical exam- 
ples are given. 

In Part II of this paper we study the backward beam method, and the same error estimates 
are obtained. A new scheme for time descretization based on Pade approximation is discussed. 

1. Introduction. Consider the problem of solving a parabolic partial differential 
equation backwards in time. For convenience we write the equation in the following 
abstract form 

( 1 .1 ) { 
~u(i = )w . 

Here w(x) is a given function in L2(Q2), and 2 is a bounded domain in Rn with a 
smooth boundary a2. L is the unbounded, nonnegative operator in L2(Q2) corre- 
sponding to a selfadjoint, elliptic boundary value problem in 2 with zero Dirichlet 
data on 3i. The coefficients of L are assumed to be smooth and independent of 
time. 

It is well known that (1.1) is ill-posed in the sense that the solution does not 
depend continuously on the data. One possible way to overcome this difficulty is to 
impose a bound on the solution at t = 0 and at the same time allow for some 
imprecision in the data. Thus we are led to the following constrained problem. 

Find any solution of 

(u = _-LU, 0 < t < 1, 
(1.2) I u(l) - wll <, 

11 u(0)11 < M, 

where the norm is the L2( 2)-norm, and 8 and M are given positive constants, 8 < M. 
Using logarithmic convexity [1], [11, p. 11], it is easy to show that any two solutions 
of (1.2), u1 and u2, satisfy 

(1.3) 11ul(t) - u2(t)1 < 26tM1 -t. 

Thus for 0 < t < 1 we have continuous dependence on the data. 
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It is difficult to solve (1.2), one reason being that, in general, solutions are not 
unique. There are methods for approximating solutions of (1.2), which are optimal in 
the sense that Holder type error estimates (1.3) can be obtained for them. 

We consider two such methods: firstly a method related to the regularization 
method of Tikhonov and Phillips [14], [12], [5], and secondly the backward beam 
method of Buzbee, Carasso [2]. These methods are discussed in Parts I and II of this 
paper, respectively. 

In the regularization method an approximate solution of (1.2) is given by 

(1.4) |v(t) = (exp(-L) + j(t)I)'exp(-Lt)w, 
(it(t) = (8/M)(1 - Olt. 

Let u denote any solution of (1.2). Then, for 0 < t < 1, 

(1.5) II u(t)- v(t)ll < stMl-t. 

This result is due to Strakhov [13] (see also [9]). The proof is quite simple and we 
repeat it in Section 2. 

We now raise the following question. Can we discretize (1.4) in such a way that for 
the discrete approximation va we get an error estimate of the type (1.5) 

(1.6) II u(t) - Va(t)jj < C6tMl-t, 

for some constant C? 
The answer to this question will have significance for the possibilities of solving 

numerically problems in two (or more) space dimensions, with nonrectangular 
geometry or nonconstant coefficients, since for such problems we must discretize in 
time and space. 

In this paper we give a partial answer to the above question. We consider 
approximating the exponential function in (1.4) in a way which corresponds to a 
time discretization. In Section 3 we show that if exp(-X) is approximated well 
enough for 0 < X < log(M/8), we can get error estimates of the form (1.6) with 
C = 2. 

The results of Section 3 are used in Section 4 in connection with a class of 
approximations 

(1.7) e (Q(X/N)/P(X/N))N, 

where Q(z)/P(z) is a Pade approximation of ez. Note that, e.g., the backward 
Euler and Crank-Nicolson approximations are members of this class. We derive 
explicit, a priori estimates of the largest step length in time k =1 /N, which ensures 
that (1.6) holds. It is shown that higher order approximations allow a much larger 
step length than, e.g., the low order backward Euler approximation. 

In Section 5 we briefly discuss the efficiency of different Pade approximations. It 
is shown that the solution of the time-discrete problem can be obtained by solving a 
sequence of equations of the type 

(1.8) (aiL2 + f8jL + ?yI)Vi = w1. 

The number of equations (1.8) that have to be solved is taken as a measure of the 
efficiency of a Pade approximation. 

It turns out that higher order Pade approximations are more efficient than low 
order approximations. This is also verified numerically. 
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In Part II of this paper we consider the backward beam method, and we obtain 
the same error estimates for the time-discrete versions of that method. Our scheme 
for time discretization is based on Pade approximations and it is conceptually 
different from that in [2]. 

Some numerical results for both methods are given in Part II. 
The problem of solving a parabolic equation backward in time is also discussed in 

[8], where a completely different approach is made. 
Unless otherwise stated the norm 11 11 is the L2( 2)-norm. Throughout we shall 

write exp(-Lt) to denote an element of the strongly continuous semigroup generated 
by L (see, e.g., [6]). The semigroup is easily defined in terms of the spectral 
representation of L. Also from the spectral representation it is seen that for ji(t) > 0 
the operator (exp(-L) + ji(t)I) has a bounded inverse, so that (1.4) is well defined. 

I am indebted to Professor V. A. Morozov for making me aware of the paper by 
Strakhov [13]. 

2. Error Estimate for the Regularization Method (1.4). In this section we shall 
show that the estimate (1.5) holds for the regularization method (1.4). The proof is 
quite simple and we shall use the same technique in connection with discretizations 
of (1.4). We shall also show that the same error estimate is valid if we use (1.4) in a 
step-by-step manner. 

Throughout we shall assume that 8 and M have been chosen so that there exist 
solutions of (1.2). 

THEOREM 2.1 (STRAKHOV [13], SEE ALSO [9]). Let u(t) denote an arbitrary solution of 
(1.2), and for O < t < 1 let v(t) be defined by (1.4). Then 

(2.1) 11 u(t) - v(t)jj < SIM-,. 

Proof. The assumption about the existence of solutions of (1.2) is equivalent to 
there being functions u0 and I such that (see, e.g., [4]) 

(2.2) 11 uol 11<M, 11 +11 < 8, w = exp(-L)uo + 

Putting u(t) = exp(-Lt)uo, we get 

II u(t) - v(t)ll 

liexp(-Lt)uo - (exp(-L) + ji(t)I)'exp(-Lt)(exp(-L)u0 + I)iI 

I lexp(-Lt) -(exp(-L) + p(t)I)'exp(-L(t + 1))i1 II ujj 

+ 11(exp(-L) + ji(t)I)1exp(-Lt)II 11'j11, 

where the operator norm is defined Ij A Il = supt II Au I1: l u ll 1 . We now use (2.2) 
and the fact that L is selfadjoint and nonnegative to get 

(2.3) 1l u(t) - v(t)ll < sup A(X)M + sup B(X)S, 
A2o0 A2o0 

where 

e-X(1 ?t) 

A(X) = e-t - ; | t)B(X), 

tB(X) e 
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Now for 0 < p, t < 1 the inequality 

(2.4) 0 (l _p), tA tl(l -t)l 
1t 

is valid, and, putting p = exp(-X)/(exp(-X) + p(t)), we get 

B(X) = pt(I - p) _(p(t))t l < tt(I - t)'_t(p(t))t_' t(Mls)'-t, 
(remember the definition (1.4) of p(t)). Thus we can estimate (2.3) 

iiu(t) - v(t)ii < p(t)t(M/6) tM + t(M)- - 

= (1 - t)stMlt + tstM1-t = tM'-t. Q.E.D. 

In view of the estimate (1.3) we cannot hope for a better error estimate than (2.1) for 
the regularization method (1.4), so that in this sense the method (1.4) is optimal. 

The numerical solution of a forward parabolic problem is usually computed by a 
marching procedure, i.e., a procedure which is recursive in time. We next show that 
the method (1.4) for the backward problem can be generalized to a recursive formula 
in such a way that the procedure remains optimal in the above sense. 

Make a (possibly nonuniform) partitioning of the interval [0, 1] 

? < tl < t2 < ... < t S < 1, 

and define the recursion 

(2.5a) I(exp(-Lt)) + ,j)-'exp(-Lt,_l)v,, i = s, s - . 2 

where v(ts) is given by (1.4) and 

(2.5b) { ( ilM)(ti -ti- )It,-, 

COROLLARY 2.2. Let u(t) denote an arbitrary solution of (1.2), and let (v,)s=, be 
defined by (2.5). Then 

(2.6) jjU(t) - v 11 < 6tM-t, 

Proof. The result is obviously true for i = s. Then assume that it is true for i = k, 
and consider 

ut = -Lu for 0 < t ?tk, jju(tk) -k jjV k, 11 u(O)j M. 

The recursion -formula (2.5) is a straightforward generalization of (1.4) to the interval 
[0, tk], and, putting Tk = tk/- I tk, we then get 

iiu(tk-1) - Vk1jj ? - =tklMltkl =k Q E Dk 

We conclude this section with some general remarks on the backwards problem 
(1.1) and on the formula (1.4). 

Considering (1.1) as an ordinary differential equation on a Hilbert space, we can 
write the solution formally as 

(2.7) u(t) = exp(L(l - t))w. 
If we try to solve (1.1) numerically simply by applying a standard marching 
procedure for parabolic equations (backwards in time), then effectively we are trying 
to approximate (2.7). This will of course give a meaningless result, since the large 
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eigenvalues of L (the eigenvalues of L tend to plus infinity) will cause perturbations 
of the data to blow up catastrophically. 

However, if we assume that the main part of the information about the solution of 
(1.1) is connected with the small eigenvalues of L, then we can solve our problem by 
approximating the exponential function in (2.7) by a function g(X, t) such that 
g(X, t) exp(X(l - t)) for small X, and g(X, t) is bounded for large X. 

In the regularization method (1.4) we have 

(2.8) g(X, t) = (exp(-X) + tL(t)) 'exp(-Xt). 
In Figure 2.1 we have plotted this function for a few values of t and M/8 = 106. 
Note that for fixed t, g(X, t) has its maximum equal to t (M/8)1-' for X = 
log(M/S). This observation will be of significance later when we approximate the 
exponential function in (2.8). 
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FIGURE 2.1 
The function g(A, t) defined by (2.8) plotted for t =0.2 (solid line), t =0.1 
(dotted), and t = 0.02 (dashed). M/8 = 106. 

3. Preliminary Error Estimates for the Approximate Method. In this section we 
derive error estimates for 

(3.1) va(t) = (f(L) + IA(t)I) I(f(L))tw, 

which is (1.4) with the exponential function replaced by an approximation f, such 
thatf(X) - e-X. 

In the next section f(X) will depend on N, where k - 1/N is a step length 
parameter, but here this dependence is suppressed. There we shall be dealing 
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explicitly with the class of approximations defined by (1.7), but in this section it will 
be sufficient to distinguish between two subclasses characterized by the following 
inequalities 

(3.2) (i) e X f(X) ?, X>0, 

(3.3a) (ii) 0 <f(X) ? e-, 0 < X log(M/I), 
(3.3b) |O0 fA 1, A '> log(M/S). 

First we give an error estimate for approximations satisfying (3.2). 

THEOREM 3.1. Let u(t) denote an arbitrary solution of (1.2), let Va(t) be defined by 
(3.1), and assume that f satisfies (3.2). If 

(3.4) X + log f(X) < (S/M) tIext for O < X s log(M/I), 

then 

(3.5) Iiu(t) - va(t)Jj < (t + max(l,2(1 -t)))StM-t. 

Remark. The error estimate depends on how well e-x is approximated by f(X). 
Theorem 3.1 shows that f(X) need only be a good approximation for 0 < X < 

log(M/I). This is not surprising in view of the remarks made at the end of Section 
2. Note that the assumption (3.2) implies that 0 A X+ log f(X). If f(X) is a good 
approximation of e-, then A + log f(A) is small. 

Proof. Using the arguments of the proof of Theorem 2.1, we see that 

(3.6) IIu(t) - va(t)II ? supA(A)M + sup B(A)6, 
AaO A 

where now 

|A(A) =l e-At-t - ( ) e -A 

(3.7) e() 
B(A)~ Ax) 

Using the inequality (2.4), we immediately get 

(3.8) B(A) < t(M/86)'t. 

To estimate A(A) we first show that under the assumption (3.2) 

A(A) = e-"t- AWf(e)4)) )e, X> 0. 

Since 1A(t) > 0 for 0 < t ? 1, we have 

f(A) ?t(t) A (f(A))t' I eX(l ), 

which gives 

f(A) + ,at) " t t e 
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Therefore, for large X we can estimate 

(3.9) A(X) < e-At < (SIM)', for X >,: log(MIS). 
To estimate A(X) for 0 s X < log(MIS), we write 

A(X)(f(X) + j(t)) =(t)eXt ?f(A)eXI - (f(A))'e4 

= p(t)e-Xt + (f(A))te-Xt((f(A))l -t 

Here both terms are positive. Using the mean value theorem and the assumption 
(3.2) it is easy to show that 

(f(X))1-t - e-X(1-t) < (log f(A) + A)(l - 

and then, using (3.4), we can estimate 

A(X)(f(X) + p(t)) < p(t)e-Xt + (f(X))te-Xt(l - t)1t(6 M)eXt 

- ,u(t)(eAt +(f(X))t) < 2?1(t)(f(X))t 

where the last inequality follows from (3.2). Now by (2.4) 

(3.10) A(X) < 2(p(t))ttt(l - t)l-t = 2(l1-t)(SIM)t, 
for 0 < X < log(MI6). Therefore, combining (3.9), (3.10) and (3.8), we get the 
desired result. Q.E.D. 

We next give the corresponding theorem for approximations satisfying (3.3). 

THEOREM 3.2. Let u(t) denote an arbitrary solution of (1.2), let v,(t) be defined by 
(3.1), and assume that f satisfies (3.3). If 

(3.11) -x - log f(A) < (6IM) o2 forO ? A ? log(M 6), 
t 

then 

(3.12) Ilu(t) - va(t)Ij < (t + max(l,2(l - t)))6tMA-t. 

Remark. Note that the 'assumption (3.3) implies that -X - log f(X) is nonnegative. 
Proof. As in the proof of Theorem 3.1 we get 

llu(t) - Va(t)fl < supA(X) . M + sup B(X) . 8, 
XAo0 ;o0 

where A(X) and B(X) are given by (3.7), and B(X) can be estimated by (3.8). 
We now show that under the assumptions (3.3) and (3.11) a(X) defined by 

a(X) = et t- f(AXW+ ( e - /X >: O, 

is nonnegative. First we consider X - log(MI6). The inequality a(X) - 0 is equiva- 
lent to 

1(A) 
W 

? / MI(t) 
(3 .13) (f ( 

A 
) + eA( t 

By (2.4) we have 

( A)) + , ( t(M 6) 
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and for X - log(M/8) 

X(I -t) I 
(M8lt 

so that (3.13) is satisfied. This means that for large X we can estimate 

A(X) < e-t < (6/M)t for X - log(M/8). 

Then we consider 0 < X < log(M/8). a(X) ? 0 is equivalent to 

( f(X))te-'t(e-(1-t) - (f(X))'-t) < (t)e-t 

and, using the mean value theorem and (3.11), the left-hand side can be estimated 

(f(X))te-'t(e-(1-t) - (f(X))'-t) < (f(X))teX"(l - t)(-X - log(f(X))) 

< (f(X))te-(l - t) g eX6/M = log2pt)(f(AX))t 

11I(t)e 
Xt 

where the last inequality follows by the assumption (3.3). Thus a(X) > 0. 
We now have 

A(X)(f(X) + 4,(t)) = (t)eXt ? (f(X))teet((f(A))l-t - 

Here the second term on the right-hand side is nonpositive, and we can estimate 

(3.14) A(X)(f(X) + jl(t)) < ? (t)e- 
Now, since for 0 < X < log(M/I) 

eX6/M? 1, 

the assumption (3.11) gives 

-X - log(f(X)) <- log 2 
t 

or, equivalently, 

e < 2(f(X)) 

If we use this in (3.14), we get 

A(X) < 21j,(t) (AX())(t < 2(l1-t)(SIM)t, 

where the last inequality follows by (2.4). Combining the estimates of A(X) and 

B(X), we get (3.12). Q.E.D. 
Note that it is possible to get the error estimate (3.12) under somewhat less 

restrictive assumptions than (3.11) (essentially it is not necessary to have a(X) > 0 
for 0 < X < log(M/6)). However, we have chosen this form in order to get a more 
straightforward analysis in the next section. 

In the next section we shall see that certain approximations to the exponential 
functions do not satisfy (3.3b) but rather 

If(A) I< 1 forA > log(MIS). 

This is the case if we have 

(3.15a) (A) (h(A))N, Neven, 
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where 

(3.15b) 0 < h(X) < e-x/N for 0 < X < log(M/I), 
(3.15c) I h(X)I < 1 for X log(MI ). 

If t = nIN, where n is odd, then (h(X))n can be negative for large X. 
In this case the error estimate is not quite as good as (3.12). 

COROLLARY 3.3. Assume that N is even and t = n/N, where n is an integer. Let 
h(X) satisfy (3.15), and assume that f(X) in (3.15a) satisfies (3.1 1). Define 

Va(t) = ((h(L))N + pl(t)I<)-(h(L))nW. 

Then 

Hu(t) - Va(t)H ? (t + max(I + t,2(1 -t)))S'M'- 

Proof. The assumption N even is necessary for va(t) to be well defined. 
We only need to show that for X - log(M/I) we have 

0 ? e-.Xt - (h(X)) - eX (1 + t)e-xt. 
(h(X))N + (t) 

But this is satisfied if 

(3 .16) (h(X))N 
t ) 

and from the proof of Theorem 3.2 (3.16) can be seen to hold. Q.E.D. 

4. Pade Approximations and Discretization in Time. The two theorems of Section 3 
show that when the exponential function in (1.4) is replaced by an approximation it 
is necessary to approximate e- well only for small X. This leads us naturally to 
considering Pade approximations, which by definition are best approximations in 
the neighborhood of the origin. 

Assume that the interval [0, 1] has been divided into N equal subintervals, put 
k = 1 N, and assume that t = nk for some integer n. Put 

(4. 1a) Np(/X) = (pk))N 

where 

(4.1b) Fpq(X) = Qpq(X)/Ppq(X), 

and Qpq(X)/Ppq(X) is the Pade approximation to e- defined [15], [10] by 

(4.1c) Qpq(A )~ v0 (P + q)!v! (q-v)! (- )v' 

(4. 1d) ppq( ^= (S P ) v. pv v=0 (p ? q)!v!(p - P)! 

Two simple approximations of this type are 

Q10(X)/P1o(X) 1/(1 + X), 

Q1-(X)/P1-(X) (1 - X/2)/(1 + X/2), 
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which in connection with ordinary differential equations correspond to the back- 
ward Euler and trapezoidal (Crank-Nicolson) methods, respectively. 

Then we approximate (1.4) 

(4.2) vN(t) = ((F(kL))N + p(t)I)1(F(kL)) w. 

For convenience we omit the indices pq. 
In this section we shall examine the inequalities (3.4) and (3.1 1) with f(X) = f N(X) 

and use error estimates for Pade approximations to derive lower bounds on N such 
that (3.4) and (3.1 1) are satisfied. 

We first identify some properties of Pade approximations. It is easily seen that if 
we require that f N(X) satisfies either of (3.2) and (3.3), we must restrict ourselves to 
the case q < p [ 15, Lemma 2]. Further [ 15], [7] 

(4.3a) e-Z = Q(z)/p(Z) + (_1)q+ R(z), 

where for some 0 

(4.3b) [R(z) - azP+q+le-O/P(z), z ? 0?0, 

(4.3c) a = ppq = p 
!q! 

Since for z ? 0 P(z) > 1, R(z) can be estimated 

(4.3d) 0 R R(z) < aZp+q+ le-0 < aZp+q+1 

From (4.3) we see that for z > 0 and 

(4.4a) q even, Q(z)/P(z) - e-z, 

(4.4b) q odd, Q(z)/P(z) < ez. 

It is obvious that all the approximations (4.1) with q even, q < p, constitute the 

subclass characterized by (3.2). Similarly, the approximations with q odd are (under 
certain conditions) the subclass characterized by (3.3). 

We now give the two theorems which correspond to Theorems 3.1 and 3.2. 

THEOREM 4.1. Let f N(X) be defined by (4.1), and let q be even, q < p. 
(a) For all X > 0, 

e -x < f N() _< 1. 

(b) Let u(t) denote any solution of (1.2), and let vN(t) be defined by (4.2). If 

(4.5a) N max(l/t, N,), 

where 

(4.5b) N= log(M/8) [ ta log(M/ )M/] 1/(p+q), 

then 

(4.6) IIu(t) -VN(t)II < (t + max(l,2(1 - t)))6tMA-t. 

Proof. (a) follows immediately from (4.4a) and the assumption q < p. For (b) we 
use (4.3) and rewrite 

X + logfN(X) X + Nlog(Q(XAN)/P(XAN)) 

- 
I ? Nlog(e-X/N ? R(A/N)) = Nlog(1 ? eA/NR( AN)). 
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The inequality log(l + x) < x and (4.3d) now give 

X + log f N(X) NeX/NR(X/N) < Nex/Na(XA/N )p?l, 

and further, using (4.5), 

X + log f N(X) s e A/NuXP?+1[(log(M/8)) tP M/Sl 

=(lo_4 )P?~?l _i/Me AI/N SI_/MeAt 

where the last inequality is a consequence of the assumption N > l/t and the fact 
that we consider only the interval 0 < X < log(MI/). (b) now follows from Theorem 
3. 1. Q.E.D. 

THEOREM 4.2. Let f N(X), u(t), and vN(t) be defined as in Theorem 4.1. Assume that 
q is odd, q < p, N is even and t = n/N, where n is an even integer. 

if 
(4.7a) N > max(l/t, N2), 

where 

(4.7b) N2 log(M/6) 12 ta log(M/8)M/8 

then 

(4.8a) ( f) <I fN(X) < e-A forO < X < log(M/6), 

(4.8b) (a 0f N(X) l< I for X> log(M/I), 

and 

(4.9) (b) IIu(t) -VN(t)It < (t + max(l,2(1 - tM -tI 

Proof. From (4.4b) we see that Q(z) has a zero for some positive z. In order that 
f N(X) > 0 we must then have N even (note that vN is not well defined if q and N are 
odd), and to be able to use Theorem 3.2 we must also have n even. Now if we can 
show that ex/NR(X/N) < 1 for 0 - X ? log(M/I), we see that fN(X) > 0 for 
O < X < log(M/I), since by (4.3) we then have 

(f N(x)) (Q(X/N)/P(X/N))N - e-x(l - eA/NR(XI/N))N > 0. 

We now show that (4.7) implies that for 0 s X < log(M/I) 

(4.10) ex/NR(X N) < 2 < 1/2. 

Using (4.3d) and (4.7), we get 

e /'NR(X/N) < e?IN(Y(XIN ) 

<e/N XP+q+l 1[ 2 tu(log(M18))P1q+l 
1 3] 

log2 1 / x p?q?l 
2) Nt ,1og(M'f/A) 6M 
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Since we consider 0 < X < log(M/8) and since N ' 1/t, (4.10) follows immediately, 
and we have proved (4.8). 

In the same way as in the proof of Theorem 4.1, we get 

-x - log fJ(X) = Nlog(l - eX/NR(X/N)) , 

(we only consider this for 0 < A < log(M/S), where f N(X) > 0). Using (4.10) and 
the inequality 

1 = 1 + X < exl-X) 
1-x 1-x 

we estimate 

_X - log f N(X) eN e R(X/N) <2Ne/NR(,/N). 
1 - ex/NR(X/N) 

In the same way as above, we now get 

-X - log fjN(X) S-1log 2e /NQ/M? !log 2e X/M, 

and (b) now follows from Theorem 3.2. Q.E.D. 

COROLLARY 4.3. If in Theorem 4.2 the restriction n even is dropped, the error 
estimate becomes 

ll u(t)- VN(t)lS (t + max(I + t, 2(1 -t))) 8tM I - t. 

In Tables 4.1-4.4 we give the values of N, and N2 for a few values of M/8 and t. 
Even though from (4.5b) and (4.7b) it appears that approximations with q even are 
better than those with q odd (the constant 2/log2 is missing in (4.5b)), the tables 
show that this is of almost no practical significance. For both classes of approxima- 
tions increasing p and q leads to a drastically lower value of N, and soon the 
requirement N ,> 1/t becomes the most restrictive. Note that for q odd, N is also 
restricted by the requirement that N must be even; e.g., for t - 0.2 we cannot have N 
smaller than 10. 

TABLE 4.1 

N1 and N2 defined by (4.5b) and (4.7b) are given for MIS = 106, t 0.2 

q 0 1 2 3 4 5 6 7 8 

p 
I 19 _ 106 11262 

2 9376 664 109 
3 673 157 46 29 
4 171 65 26 18 11 
5 72 35 17 13 8 7 
6 40 23 12 10 7 6 5 
7 26 16 10 8 6 5 4 4 
8 18 12 8 6 5 4 4 3 3 
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TABLE 4.2 

N1 and N2 given for MIS = 106, t = 0.5 
q 0 1 2 3 4 5 6 7 8 9 10 

p 
I 47 * 106 17806 
2 14824 901 137 
3 913 198 55 34 
4 214 78 30 21 12 
5 87 41 19 14 9 8 
6 47 26 14 11 7 6 5 
7 29 18 10 8 6 5 4 4 
8 20 14 8 7 5 5 4 4 3 
9 15 11 7 6 5 4 3 3 3 3 

10 12 9 6 5 4 4 3 3 3 2 2 
11 10 7 5 5 4 3 3 3 2 2 2 
12 8 6 5 4 3 3 3 3 2 2 2 

TABLE 4.3 

N1 and N2 given for M 8= 104, t 0.2 

q 0 1 2 3 4 5 6 

p 
1 84831 613 
2 511 84 21 
3 85 30 12 9 
4 33 16 8 6 4 
5 18 11 6 5 3 3 
6 12 8 5 4 3 3 2 

TABLE 4.4 

N1 and N2 given for M/d = 104, t 0.5 

q 0 1 2 3 4 5 6 7 8 

p 
1 212076 970 
2 807 113 27 
3 115 38 14 10 
4 41 19 9 7 5 
5 22 12 7 5 4 3 
6 14 9 5 4 3 3 2 
7 10 7 4 4 3 3 2 2 
8 8 5 4 3 3 2 2 2 2 

The price that must be paid for a smaller value of N is, of course, a more 
complicated approximation, and it is seen that the work for computing vN depends 
also on p and q. This question is discussed in the next section. 

5. Efficiency Considerations. In this section we briefly discuss how to compute 
vN(t) from (4.2). We still assume that the problem has not been discretized in space. 

Using (4.1) and putting k = 1/N, t = nk, we can rewrite, 

(5.1) (QN(kL) + i(t)PN(kL))vN(nk) = Qn(kL)PN (kL)w 
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On the left-hand side we have a polynomial in L of degree Np (remember q < p) and 
this can be factorized in quadratic factors (if N and p are odd there will be one linear 
factor; for simplicity we assume N even in the sequel). If we factorize also the 
right-hand side of (5.1), we can solve (5.1) by a recursion 

(zo = w,~ 

(5.2) (a L2 + /IL + yyI)z= Sj(L)zj1, i = 1,2,...,Np/2, 

vN(nk) = z 

where the Si are quadratic or linear polynomials. 
Thus, if L is a second order elliptic operator, vN(nk) can be computed essentially 

by solving a sequence of Np/2 fourth order elliptic equations. 
To compare the different time discretizations considered in Section 4, we take Np 

as a measure of their efficiency, where, for given values of p, q, t and MI6, N is the 
smallest integer which satisfies the conditions of Theorems 4.1 or 4.2. Here it is 
important to note that the conditions of these theorems are only sufficient condi- 
tions. Therefore the approximation with the smallest value of Np need not be the 
optimal approximation. This will be verified numerically. 

In Tables 5.1-5.4 we give the values of Np for different Pade approximations and 
for the same values of MI6 and t as in Tables 4.1-4.4. 

TABLE 5.1 

Np given for MIS = 106, t = O.2 
q 0 1 2 3 4 5 6 7 8 

p 
I 19 106 11270 
2 18760 1340 220 
3 2025 480 150 90 
4 700 280 120 80 60 
5 375 200 100 100 50 50 
6 240 180 90 60 60 60 30 
7 210 140 70 70 70 70 35 70 
8 160 160 80 80 40 80 40 80 40 

TABLE 5.2 
Np given for MIS = 106, t = O.5 

q 0 1 2 3 4 5 6 7 8 9 10 

p 
1 47 106 17806 
2 29648 1804 276 
3 2742 594 168 102 
4 856 312 120 88 48 
5 440 210 100 70 50 40 
6 288 156 84 72 48 36 36 
7 210 126 70 56 42 42 28 28 
8 160 112 64 64 48 48 32 32 32 
9 144 108 72 54 54 36 36 36 36 36 

10 120 100 60 60 40 40 40 40 40 20 20 
11 110 88 66 66 44 44 44 44 22 22 22 
12 96 72 72 48 48 48 48 48 24 24 24 
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TABLE 5.3 

Np given for M/d = 104, t - 0.2 
q 0 1 2 3 4 5 6 

p 
1 84835 620 
2 1030 180 50 
3 255 90 45 30 
4 140 80 40 40 20 
5 100 100 50 50 25 50 
6 90 60 30 60 30 60 30 

TABLE 5.4 

Np given for M/S - I04, t - 0.5 
q 0 1 2 3 4 5 6 7 

p 
1 212076 970 
2 1616 228 56 
3 348 114 42 30 
4 168 80 40 32 24 
5 110 60 40 30 20 20 
6 84 60 36 24 24 24 12 
7 70 56 28 28 28 28 14 14 

In Tables 5.1 and 5.3 some adjacent values of Np differ very much. E.g., in Table 
5.1 the (6,6) and (7,7) approximations have Np = 30 and Np = 70, respectively. 
This is because of the requirement that N must be even when q is odd. Such 
differences do not occur when 1/It is an even integer. 

From Tables 5.1-5.4 we see that with Np as a measure of efficiency the most 
efficient approximations are those with p = q. We also see that using a higher order 
approximation may reduce the work substantially. This is verified numerically in 
Part II of this paper. However, the value of Np cannot be reduced under a certain 
level because of the restriction t = n/N. 

Space discretization and the efficient solution of linear algebraic systems corre- 
sponding to (5.2) are treated in [3] for the special case when the geometry is 
rectangular in two dimensions and the coefficients of L are nonconstant but allow 
separation of variables. 
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